
I'r rl F COO
ql"

N

4l:

Decomposition of Linear Programs
'4: Using Parallel Computation*

DTIC
ELECTE James K. Ho
DEC 2 91988 Tak C. Lee

6 DR.P. Sundarraj

Management Science Program
College of Business Administration

University of Tennessee
Knoxville, TN 37996-0562

...........

Revised: May, 1988

To appear in Mathematical Programming

*Invited paper at the Symposium on Parallel Optimization, Madison WI, August 10-12, 1987.

Research supported in part by the Office of Naval Research under grant N00014-87-K-0163.

88 12 28 071

'Abstract

\)This papir describes DECOMPAR: an implementation of the Dantzig-Wolfe

decomposition algorithm for block-angular linear programs using parallel

processing of the subproblems. The software is based on a robust experimental code

for LP decomposition and runs on the CRYSTAL multicomputer at the University

of Wisconsin-Madison. Initial computational experience is reported. Promising

directions in future development of this approach are discussed. .

Keywords: Linear Programming, Large-Scale Systems, Decomposition, Parallel

Computing.

Accesion For
NTIS CRA&I

DOfC TI A "

By __

Ditb ibut'.-8 I

Dist

to

..........................4
1 9-

1. Introduction
Many linear programming models represent large, complex systems consist-

ing of independent subsystems coupled by global constraints. Such LP's are said to

have the block-angular structure. The decomposition principle of Dantzig and

Wolfe [1] leads to algorithms that transform the original problem into a sequence of

subproblems corresponding to the uncoupled subsystems. The subproblems are

coordinated by a master problem corresponding to the global constraints through

primal (proposals) and dual (prices) information. While it has been obvious that the

subproblems can be solved simultaneously for algorithmic efficiency, it is not until

recently that advances in computer technology make such an approach realizable.

Advances in VLSI (very large-scale integration) for digital circuit design are

leading to much less expensive and much smaller computers. They have also made it

possible to build a variety of "supercomputers" consisting of many small computers

combined into an array of concurrent processors. We shall refer to such an

architecture as multicomputers. Each individual processor is called a node.

Visionaries in the industry are discussing designs with 104 to l05 nodes each capable

of 10 megaflops. Actually, machines with 102 to 104 nodes of varying power are

already available commerically. They cost well over $10 5 currently. However.

realistic projections call for prices to be lowered by at least a factor of 10 within five

to ten years.

The prospect of LP decomposition using parallel computation has significant

impact on many real-world applications. We shall cite only one example for

illustration. An important problem in production and operations management is that

of material requirements planning (MRP). A number of products are to be

assembled from parts which are themselves made up of other parts. Each step in the

assembly requires certain manufacturing capacities. The exogenous demands for the

products and spare parts in each time period over a finite planning horizon are

projected. Assuming linear production and inventory holding costs, the problem is

to find the least cost production and inventory schedule that stays within the capacity

constraints and meets the demands. Formulated as an LP, a 10-period problem with

100 products, each with 100 parts, will have on the order of 100,000 constraints and

1 AaI

200,000 variables. Previously, such problems were simply too large for existing LP

software and the LP approach was deemed impracticable. In [3], Ho and McKenney

showed that using decomposition, the subproblems have the property that any basis
can be triangularized. This allows network-like techniques to be implemented on
nodes of existing multicomputers to handle the subproblems. Using a multi-
computer with 100 nodes, the LP decomposition approach is expected to be viable.

Before such specialized planning systems can be realized, empirical studies of
LP decomposition using parallel computation will be important first steps. This
paper describes DECOMPAR: an implementation of the Dantzig-Wolfe decomp-
osition algorithm for block-angular LP's on a multicomputer. Section 2 reviews the

basic algorithm and summarizes recent developments. The essential features of an
efficient implementation on conventional computers are described in Section 3.
Certain aspects of CRYSTAL, an experimental multicomputer at the University of
Wisconsin-Madison, relevant to LP decomposition are discussed in Section 4.
Section 5 presents the design of DECOMPAR. Initial computational results are

reported in Section 6 and discussed in Section 7.

2. Review of Dantzig-Wolfe Decomposition

For brevity, the algorithmic details will be omitted here. The reader is
referred to Ho and Loute [5] for a concise summary of the method. As a quick
review, however, it should be helpful to capture the essential ideas graphically. The
structure of the block-angular LP is depicted in Figure 1. The master problem is

illustrated in Figure 2 where Xr indicates an array of extreme point solutions to the

rth subproblem. A column in the master problem is known as a proposal from a

subproblem. A typical subproblem is shown in Figure 3. Note that in general

extreme ray solutions to the Subproblems must also be considered. The master

problem determines an optimal combination of the proposals on hand by assigning

values to the weights X,. The optimal dual variables x, known as prices, are used to

adjust the objective function in the subproblems which in turn may produce new
proposals to improve the global objective in the master problem. The process

continues until no further improvement can be achieved.j2

A discussion of historical perspective as. well as recent developments in the LP
decomposition approach is given in Ho [4]. The main points of that survey are

summarized below.

i) Due to the lack of extensive and systematic studies of the behavior of

decomposition algorithms, early experiences may have left a generally

negative and misleading imprint on the entire approach.
ii) For well-behaved LP models, the convergence as measured by the number of

times the master problems must be resolved is actually surprisingly fast.
iii) Slow convergence may be caused, at least in part, by the propagation of

numerical errors.
iv) There are indeed meaningful, large-scale applications that eventually may

have to rely on decomposition.
v) New theoretical results are leading to more efficient and robust algorithms.
vi) New computer architectures allowing parallel computation will provide

further opportunities to realize the potential of the decomposition approach.

3. DECOMP: A Sequential Decomposition Code
As the building blocks of our parallel implementation, we use DECOMP: a

Fortran code of the Dantzig-Wolfe decomposition algorithm. This code was first

assembled in 1973 by Carlos Winkler at the Systems Optimization Laboratory at

Stanford University. It was based on John Tomlin's LPM1 code of the revised

simplex method. Since then, DECOMP has been extended and improved over a
number of years by James Ho and Etienne Loute at the Center for Operations

Research and Econometrics in Belgium. It was used extensively in empirical studies

(see e.g. [6]) and as prototype for more advanced, commercial software based

implementations (e.g. DECOMPSX in [5]). Comprehensive documentation for

DECOMP was completed recently by R.P. Sundarraj [7].

While many refinements were necessary to make DECOMP comput- ationally

efficient and robust, we list only the major ones. Since all of these techniques are
also used in the advanced implementation DECOMPSX described in [5], the reader

-"- - ___-- I

may refer to that paper for further details.

i) Data is disk resident. The LP to be solved (either the master problem or a

subproblem) is read into memory. Subsequent modifications are written to

disk.

ii) All matrices are stored in sparse form using column packing. The coupling

coefficients (Ar) are included in a subproblem as nonbinding constraints

(Figure 4) whose updated right-hand-side gives a proposal to the master

problem.

iii) The prices i are incorporated directly into the dual variables of the

subproblems without actual modification of its objective function.

4. CRYSTAL: A Multicomputer

For research on LP decomposition using parallel computation, we are

primarily interested in multiple-instruction-multiple-data (MIMD) multi-

computers. These may be integrated systems with multiple processors,

local-area-networks (LAN) of mini- or microcomputers, or even networks of

mainframes. We are not concerned with parallel computing in the sense of SIMD,

pipeline or vector machines.

The CRYSTAL multicomputer [2] under development in the Computer

Science Department at the University of Wisconsin-Madison provides a distributed

processing environment most suitable for experimentation with LP decomposition.

It is a set of 20 VAX-11/750 minicomputers each with 2 megabytes of memory

connected by a 80 megabit/sec Proteon ProNet token ring. Depending on the amount

of direct control of processor resources required, projects can be implemented

using either a communication service (the "nugget") that resides on each node

processor, or the Charlotte distributed operating system. Development, debugging

and execution of projects are done through any of several VAX-11/780 hosts

running under Berkeley Unix 4.2. The CRYSTAL project is supported by a

National Science Foundation Coordinated Experimental Research grant. Access to

the systems for the present work is provided by courtesy of Professor Robert

4s

Meyer.

Since LP decomposition has a natural interpretation as decentralized planning,

the granularity (or loose coupling) of the CRYSTAL architecture is of particular

relevance. The nodes, being separate machines, can in principle represent

geographically distinct facilities. This will allow, for example, corporate-level LP

modeling with divisions handling their own subproblems. Or, in the case of

multinational systems analysis, individual nations may guard their sensitive data and

still be able to contribute to a joint project. For this reason, the speed-up obtainable

with parallel computing is not the only motive behind our empirical studies. The

efficacy of distributed processing is also of paramount interest.

Several aspects of the CRYSTAL environment that affect our experiments

should be mentioned here. First, the host machines operate under time-sharing.

Therefore run-times depend on the machine load. Secondly, more than one host may

be active and message speed on the token ring is again load dependent. Finally, it is

possible for errors to occur in messages. The token ring monitors errors

automatically and retransmits messages if necessary. These factors can introduce

considerable variability in experimental results. In Section 6, we discuss the

measures of performance used in our experiments that remain significant under

such circumstances.

5. DECOMPAR: A Parallel Decomposition Code

The basic idea behind the design of DECOMPAR is to process the subproblems

concurrently on the node machines. In the current version, each subproblem is

assigned to one node and the master problem is handled by the host. A schematic

representation of DECOMPAR is shown in Figure 5. To allow for situations where

there are more subproblems than nodes, later versions will have built-in

mechanisms to distribute the subproblems appropriately. Also, since time-sharing

on the host machine makes it difficult to obtain accurate timing of algorithmic

procedures, the option of having the master problem on a node will also be

implemented.

5

" :: -. -:' = - : , ; 'i -..• ...T

The procedures used on the host machine are listed in Table I together with the

functions they perform. Those for the node machines are listed in Table 2.

I/O & Setup INDATA Driver for input routines

INIT Initialize communication buffers

INPUT Read data in MPS format

SENDAT Distribute subproblems to nodes

UNRAVL Write solutions

Decomposition MASTER Process the master problem

PACK Incorporate proposals into master

POLICY Set parameters according to strategy

RESULT Phase 3 of decomposition to

reconstruct a primal solution to LP

Revised Simplex BTRAN Backward tranformation for prices

CHSOL Check accuracy of solution

CHUZR Ratio tests for column to leave basis

FORMC Check feasibility

FTRAN Forward transformation for updated

column

INVERT Refactorization of the basis

NORMAL Primal Revised Simplex

PRICE Pricing for column to enter basis

UNPACK Unpack a column in the LP matrix

UPBETA Update the right-hand-side

WRETA Update the basis factorization

Table 1. DECOMPAR Procedures on the Host Machine

6 i,

Inc Name Funtin
Decomposition SUB Driver to process subproblem

CHECK Regulate proposal generation

Revised Simplex (Same procedures as on the Host machine)

Table 2. DECOMPAR Procedures on the Node Machines.

The following is a pseudo-code description of DECOMPAR in what will be

referred to as the standard version. Variations of this scheme will be implemented to

accomodate different strategies made possible by parallel computation.

DECOMPAR: Host Program

Step 1: Input data

1.1 Read and store master problem data.

1.2 For each subproblem,

1.2.1 read data;

1.2.2 send data to node;

1.2.3 wait to receive proposal from node.

1.3 Incorporate proposals into master problem.

Step 2: Iterations

2.1 Phase 1

2.1.1 Set Phase 1 objective in master problem.

2.1.2 CYCLE until termination.

2.1.3 If infeasible, stop;

else 2.2.

2.2 Phase 2

2.2.1 Set Phase 2 objective in master problem.

2.2.2 CYCLE until termination.

2.2.3 If unbounded, stop;

7

else Step 3.

CYCLE:

C.1 Solve master problem.
C.2 If (primal-dual gap < tolerance) or (no more proposals),

terminate.

C.3 Send prices to nodes.
C.4 Wait to receive proposals from all nodes.

C.5 Incorporate proposals into master problem.

C.6 Return to C.1.

Step 3: Phase 3

3.1 Compute allocations for subproblems.

3.2 Send allocations to nodes.

3.3 Output solutions from nodes.

DECOMPAR: Node Program

Step 1: Initialization

1.1 Wait to receive subproblem data from host.

1.2 Solve subproblem.

1.3 If infeasible, stop;

else generate proposal.

1.4 Send proposal to host.

Step 2: Iteration

2.1 Wait for prices from host.

2.2 Solve subproblem.

2.3 Generate proposals, if any.
2.4 Send proposals to host.

2.5 Return to 2.1.

8 A

The load-balancing aspect of the standard version of DECOMPAR is

illustrated in Figure 6. There, a shaded time slot indicates a busy period for the

corresponding machine. A blank indicates an idle period. The time for a cycle

consists of that required to process the master problem on the host plus the longest

time to process a subproblem on the nodes. These critical times sum up to the total

solution time and are drawn in darker shades.

Currently, DECOMPAR is dimensioned for block-angular LP's with up to 10

subproblems, each with up to 400 rows, 1000 columns and 10,000 nonzeros for

matrix and basis data. The master problem can have up to 99 rows (including

convexity constraints). While all the dimensions can be expanded considerably

within the CRYSTAL environment, the only maior adjustment planned for initial

experiments is to increase the number of subproblems and the number of coupling

rows.

From Figure 6, it is quite clear that load balancing can be improved by using

variations of the standard strategy -imed to keep the machines busy more of the

time. In particular, we consider the following strategies:

I. First Subnroblem Strateg)':

Master is activated as soon as first subproblem with proposal is

completed.

II. First Pron1osal Strategy:

Master is activated as soon as first proposal is generated.

III. Instant Feedback Strategv:

All nodes are kept active if possible with prices and proposals

communicated as soon as available.

While there should be less idle time using these strategies, the speed of

convergence may be adversely affected. This is because the information that is being

generated and communicated more rapidly may require many smaller steps toward

the final solution. Such algorithmic behavior will obviously be problem dependent

and can be better understood only through empirical observations. The various

9

-....

options available in the DECOMPAR code are therefore useful for the investigation

of parallel computation in LP decomposition.

6. Computational Results

The initial experiments are designed mainly to validate DECOMPAR and

briefly compare the computational strategies. Ten small to medium size test

problems are used. Their characteristics are listed in Table 3.

Problem Blocks Rows Columns % Density

Actual Natural Coupling Total

DEEPI 6 6 16 100 264 29.3

DEEP2 4 4 11 100 225 32.8

FIXMAR 4 4 18 325 777 1.2

MEAT12 6 12 46 381 692 1.3

MEAT31 8 31 11 384 961 1.3

MEAT43 9 43 16 648 1253 0.7

FORESTRY 6 6 11 402 1006 1.0

SCORPION 6 6 53 389 747 0.7

DYNAMICOa 5 10 10 678 1177 0.7

DYNAMICO 10 10 10 678 1177 0.7

Table 3. Characteristics of the Test Problems

DEEP1 and DEEP2 are randomly generated problems with dense blocks. All

the others are from real applications. FIXMAR is a production scheduling problem.

The MEATxx examples are for multiproduct ingredient mix optimization in the

meat processing industry. FORESTRY is from a forest management model.

10

pd

r

SCORPION is from a French energy model. DYNAMICO is a model of world trade

and development from the United Nations. The column counts in Table 3 include

one logical column per row. For some problems, several natural blocks are grouped

together to reduce the actual number of subproblems required. The termination

criterion used throughout is a relative tolerance of 10-4 for the primal-dual gap.

Since the host machine is time-shared, every effort is made to run comparative

experiments under close to identical conditions. While these initial results are not

intented to provide definitive comparative measures, they do give an idea of the

relative performance of various options in DECOMPAR and suggest directions for

future improvement. The total run time with DECOMPAR is compared to that with

DECOMP on the host machine. For DECOMP, the total includes disk I/O time

which is an essential feature of sequential decomposition because the subproblems

have to be disk resident. The approximate percentage of the total time involved in

disk I/O is also recorded. The speed-up factor is the ratio of total DECOMIP time to

total DECOMPAR time. Note that the total DECOMPAR time includes message

transmission times on the token ring. At present, we do not have accurate measures

of such intemodal communications. The estimate is that they constitute less than I C

of the total DECOMPAR time. The run times and speed-up factors for the standard

version of DECOMPAR are recorded in Table 4. All times reported exclude the

initial input times for problem data.

11 ,"1-

Problem Cycles DECOMP DECOMPAR Sped-Up

Total %I/

DEEPI 14 393 63 106 3.72

DEEP2 14 275 71 58.0 4.75

FIXMAR 19 491 54 128 3.83

MEAT12 16 582 49 238 2.45

MEAT31 7 108 61 15.5 6.94

MEAT43 8 128 72 16.4 7.80

FORESTRY 14 506 44 138 3.67

SCORPION 5 63.0 76 8.51 7.41

DYNAMICOa 17 1004 39 192 5.23

DYNAMICO 11 530 46 97.8 5.42

Table 4. Solution Times (in seconds) for DECOMP and
DECOMPAR (standard version).

Two standard measures of effectiveness in parallel computing are efficiency

and load-balance. Efficiency is expressed as E = S / P where S is the speed-up factor

and P is the number of processors used. In most applications, Emax = 1 is the

theoretical limit on efficiency. Load-balance is indicated by the busy time as a
percentage of total time on the processors. Perfect load-balance is when all the

processors are 100% utilized. In general, applications with higher efficiency and

better load-balance are considered more effective in parallel computing.

By nature of the decomposition codes, the theoretical limit of E is not 1. This is
because we are not simply distributing a fixed amount of work over several
processors. Instead, we assume that a single processor cannot in general solve an LP

all-in-core using decomposition. With DECOMP, the subproblems are disk resident

and considerable disk I/O is incurred in setting them up for solution sequentially.

12

With DECOMPAR, all data associated with a subproblem is stored in the local
memory of a node machine and no disk I/O is necessary. Of course, the master and

subproblems have to communicate by passing messages. It turns out that by
comparison, the amount of such data transfer required is much less than the
manipulation of subproblems. Therefore, DECOMPAR is actually doing less total
work than DECOMP when solving the same problem and the efficiency of parallel

computation can exceed one. It should be remarked that customarily, only CPU
times are compared in computational experiments. However, for large scale
problems such as linear programs for production and operations planning, the
wall-clock time is of ultimate practical interest. In this respect, the potential benefits

of LP decomposition with parallel computation are particularly promising.
Note that since we are really comparing different tasks, the actual speed-up

factors will depend on the relative efficiency of computation and disk I/O. For
example, they will be lower if a faster disk drive is used. For this reason, our results

comparing sequential and parallel decomposition serve mainly as a case for

reference.
In Table 5, the speed-up factors for DECOMPAR are used to compute E. The

percentage utilization of the host and the average percentage utilization of the nodes

are also recorded. Observe that the major factor in the speed-ups obtained with
DECOMPAR as compared to DECOMP is the saving in disk I/O time. In terms of

computation, the standard version of DECOMPAR is essentially a two-tier

algorithm because each cycle consists of a master problem and then the
subproblems. Only the latter are processed in parallel. Suppose a problem with r

blocks takes t cycles in which the average time for the master is m and the average
time for a subproblem is s. Then the total sequential time is approximately t(m + rs)

disregarding time to manipulate data. The total parallel time using one processor for
each of the master and subproblems is approximately t (m + s). Therefore, letting

P = r + 1, we have

Emax (m+rs)/(m+s)(r+ 1).

For m close to s, Emax 1/2.

13

-i..

Problem P % Host % Nodes Speed-Up E

DEEP2 5 58.7 21.1 4.75 0.95

FIXMAR 5 61.6 18.5 3.83 0.77

DYNAMICOa 6 56.7 27.9 5.23 0.87

DEEPI 7 77.9 10.9 3.72 0.53

MEAT12 7 92.5 4.28 2.45 0.35

FORESTRY 7 42.8 25.6 3.67 0.52

SCORPION 7 84.7 8.67 7.41 1.06

MEAT31 9 64.3 5.78 6.94 0.77

MEAT43 10 78.7 8.48 7.80 0.78

DYNAMICO 11 53.3 24.7 5.42 0.49

MEAN 7.4 67.1 15.6 5.12 0.71

Table 5. Efficiency and Load-Balance Measures for DECOMPAR
(standard version)

All the options implemented in DECOMPAR (first subproblem strategy, first
proposal strategy and a variant of instant feedback strategy) are aimed to improve

the load balancing of the decomposition approach. Empirical results with these

options are summarized below.From Table 6 it can be seen that while the strategy of restarting the master

problem as soon as the first subproblem terminates with a proposal does increase the

utilization of the processors, the total run time is significantly inferior to the

standard version in most cases tested. This is because such earlier restarts often

preclude the generation of useful information in a particular cycle, hence increasing

the number of cycles required and offsetting any benefits from an improved load

balance.

, 14

.. ! i-" V

Problem Cycles % Host % Nodes Speed-Up)
(relative to standard version)

DEEP2 32 68.2 31.6 0.86

FIXMAR 102 79.4 30.2 0.59

DEEPI 43 86.8 13.0 0.68

MEAT12 57 92.3 7.6 1.05

FORESTRY 61 64.8 34.9 0.85

SCORPION 19 88.2 11.4 0.42

Table 6. Performance of DECOMPAR with First Subproblem
Strategy

These results implied that the second strategy of restarting the master problem

as soon as a proposal is generated will be even less interesting. For this reason, we

did not make any runs using the first proposal strategy. At this point, the only

remaining option of improving on the standard version is instant feedback, i.e.

passing prices and proposal information among the master and subproblems as soon

as they are generated. In principle, the purest form of this strategy can be

implemented as follows. At every simplex step in the master problem, the new

prices are sent to the subproblems in appropriate buffers. At every simplex step in a

subproblem, the latest master prices in the buffer is incorporated into the complete

pricing vector which has the same effect as modifying the objective function of the

subproblem. A proposal is sent at once to the master problem and will be considered

in the next simplex pricing step there. It turns out that for practical problems, this

scheme will very quickly create an unmanageable amount of intemodal communi-

cation among the master and subproblems. Modifications are therefore necessary to
regulate such coordinating information.

We shall call the version of modified instant feedback strategy that has been

15

tested on CRYSTAL the accelerated feedback strategy. When the master problem is

idle, it keeps checking the appropriate buffer for proposals. As soon as one or more

proposals are found, they are incorporated and the master problem is solved.

Meanwhile, the subproblems may continue to generate proposals according to the

last set of prices from the master problem. These proposals are put in the buffer. At

optimality of the master problem, prices are sent to the subproblems to replace the

old ones immediately. The master problem again checks for proposals in the buffer

and restarts if there is any. This represents a better regulated update of price

information than instant feedback. Instead of updating at every simplex step of the

master problem, new prices are typically sent to the subproblems after several

simplex steps. The process between two successive price updates constitutes a cycle.

As to the proposals, experience with DECOMP established that for best results,

some selection mechanism is necessary when sending multiple proposals from a

subproblem. This is because an excessive number of proposals may clutter up the

master problem. Also, proposals that are too similar may introduce numerical

instability in the master problem. Therefore, as admissible proposals are being

generated, a screening mechanism regulated by user-supplied parameters is used.

Offhand, it is not obvious that overall performance can be improved. While we

attempt to keep all the processors busy, they may be generating inferior information

that leads to poor convergence. As it turns out, this strategy works very well and in

all cases tested, succeeds in increasing both the processors utilization and the overall

speed-up. On the average, the accelerated feedback strategy is 1.31 times faster than
the standard version. The host utilization increased from 67.1% to 95.8%, the nodes

utilization from 15.6% to 21.0%. The results are summarized in Table 7. Note that

even with accelerated feedback, the average utilization of the subproblem nodes is

still quite low. This shows that the subproblems are relatively "easy", especially in

later stages of the solution process. An obvious strategy to take advantage of this fact

is to assign more than one subproblem to a node. However, this will involve

substantial modification of the codes and is therefore not actually tested.

16
i t

Problem Cycles % Host % No&s Speed-Up
(relative to standard version)

DEEP2 24 94.0 31.8 1.38

FIXMAR 52 98.1 25.8 1.16

DYNAM1COa 49 93.6 42.2 1.41

DEEPI 29 98.7 12.5 0.88

MEAT12 38 98.4 5.43 1.02

FORESTRY 36 96.2 34.8 1.74

SCORPION 10 91.1 15.4 1.24

MEAT31 15 96.9 8.25 1.04

MEAT43 12 94.9 12.7 1.93

MEAN 29 95.8 21.0 1.31

Table 7. Performance of DECOMPAR with Accelerated Feedback
Strategy

7. Discussion

We have demonstrated DECOMPAR as a robust experimental tool for LP

decomposition using parallel computation. It is now possible to investigate many

interesting computational strategies. Our initial empirical results indicate that

significant speed-up can be obtained using parallel decomposition mainly because of

the elimination of the disk I/O required in sequential decomposition to manipulate

the subproblems. To further streamline the computations, the accelerated feedback

strategy is very promising. Apart from algorithmic efficiency, this observation may

have significant implications in the analysis of information flow within decision

17

- -' - •: •... . • ...':: :, : ., ;, :. € I i:,:' 7 ...

processes. For our test problems, it is observed that the processor utilization for the
master problem dominates that for the subproblems. This suggests that each node

should be used to handle several subproblems. Also, more sophisticated controls can

be designed to allocate the work load dynamically. Our plans are to investigate such

topics using commercially available multicomputers of both distributed and

shared-memory architures. Test problems from material requirement planning with
around ten thousand constraints will be used. Further work in this direction should

contribute to the goal of solving large-scale production and operations planning

problems on affordable parallel computers.

Acknowledgement

The authors are indebted to Robert Meyer for providing access to the

CRYSTAL system. They also wish to thank R. J. Chen, Deepankar Medhi, Russell

Lee, and Charles Pfleeger for their help in overcoming various obstacles in the

course of this project.

18 1_
.~ ..

References

* [1] G.B. Dantzig and P. Wolfe, "The decomposition principle for linear
programs", Operations Research 8 (1960) 101-111.

[2] D. Dewitt, R. Finkel and M. Solomon, "The CRYSTAL multicomputer: design
and implementation experience", Technical Report 553, Computer Science
Department, The University of Wisconsin-Madison, September, 1984.

[3] J.K. Ho and W. McKenney, "Triangularity of the basis in linear programs for
material requirements planning" Technical Repert MSP-87-3, Management
Science Program, The University of Tennessee, Knoxville, July 1987.

[4] J.K. Ho, "Recent advances in the decomposition approach to linear
programming", Mathematical Programming Study 31 (1987) 119-128.

[5] J.K. Ho and E. Loute, "An advanced implementation of the Dantzig-Wolfe
decomposition algorithm for linear programming", Mathematical
Programming 20 (1981) 303-326.

[6] J.K. Ho and E. Loute, "Computational aspects of DYNAMICO: a model of
trade and development in the world economy", Revue Frangaise
d'Automatique, Informatique et Recherche Oprationelle 18 (1984) 403-414.

[71 R.P. Sundarraj, "Documentation of DECOMP: a Dantzig-Wolfe
decomposition code for linear programming", Master's Thesis, Management
Science Program, The University of Tennessee, Knoxville, 1987.

19

Iu .

XI X2 X3

Cl C2 C3

A1 A2 A3 < bo

B1

B2 t 2

B3 3

Figure 1. A Block-Angular Linear Program

-. '- --- -," L ,,==,, ==,=,= .= n un u ...,....., A.. - - -

X 2 X3

A, CXl A A~21 cx

A1 Xl AX 2 A3 X3

012 1=
'73

o2 I11... 1 = 1
03 I 3Z... I -1

Figure 2 The Master Problem

x

B<t

Figure 3 A Subproblem

K"7 -- ,.

x

CIA
A__::_____ /-Ax

IL A

P B b

Figure 4 A Subproblem as implemented

v

: - . ,- I "f .

I d I !

Host VAX 11/780

MPS Distribute Sub DataData Solve Master

Send PricesReceive Proposals
Output Set Strategies

"-'-" Token Ring

Reev Prce Rceve Prices
Solve Sub . • . . Solve Sub
Send Proposals Send Proposals

Figure 5 Design of DECOMPAR on CRYSTAL

Host

Node 1

Node 2 I

Node 3 1 1

Node4 1 [1 1

Cycle 1w- 1 -- 4- 2- 4- 3 --- 4-' -5-*6

Total Time

Figure 6 Typical Load-Balance in Standard Version

of DECOMPAR

A.A

SECURITY CLASSIFICATIONe OF THIS PAGE (I1ben OZ. En.1ce.0________________

REPORT DOCUMENTATION PAGE _______._,_-____ ini (MIOMPm la
.. REPORT NUMBER GOVT ACCESSION NO S. RECIPIENTS CATALOG NUMER"

MSP-87-4 R
4. TITLE (.dE SWW11.) SL TYPE.OFREPORT G PERIOD QOVUREO

Decomposition of Linear Programs Using Revision of Tech'ical
Parallel Computation Report MSP-87-4 1

a. PENRFOMIMS ORo. amRT NUMBR

7. AUTNOR(.) L CO" '-MI"WO

James K. Ho N01487_J-O163 1
"S bRarraj ...

. PERFORMING ORGANIZATION NAME AN ADDRESS '

University of Tennessee, College of Bus. Admin.
Depa*rtment of Management
AR yglyanqjgnt Center

I i. R ~DaI"sc oREss Decembr TW198
Department of the Navy
800 N. Quincy Street is. 4UDER O tA
Arlington, V 22217-5000 19 Pages

IS. MONITORING AGENCY NAME 6 AOORESS(If dilorenl irsm Controlling Oeice) IS. SECURITY CLASS. (01Al. .reper
Unclassified

IS. DISTRInUTION STATEMENT (of this Ropor"

This document has been approved for public release and sale, its
distribution is unlimited.

17, DISTRIBUTION STATEMENT (of Ue bstract entored In Block 20. It diferenl ferm Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cting. en Iewer&* aide it neeoo y and Identify by block amber)

Linear Programming
Large-Scale Systems
Decomposition
Parallel Computing

S0. AOSTRACT (Coeanlme on reverse Rid. It neeeemy usnd Identll by blek amoer)

This paper describes DECOMPAR: an implementation of the Dantzig-Wolfe
decomposition algorithm for block-angular linear programs using parallel
processing of the subproblems. The software is based on a robust
experimental code for LP decomposition and runs on the CRYSTAL multi-
computer at the" University of Wisconsin-Madison. Initial computational
experience is reported. Promising directions in future development of.
this approach are discussed.

DD ,I 1473 EDITION OF I NOV 65 IS O8SOLETE
S/N 0102. LP. 014. 6601 SECURITY CLASSIFICATION OF THIS PAGE (Ohm PU. O

). ~

